Abstract

The role of samarium (Sm) 4f states and Sm-perturbed O 2p states in determining the sulfur tolerance of Sm-doped CeO2 was elucidated by using the density functional theory (DFT) + U calculation. We find that the sulfur tolerance of Sm-doped CeO2 is closely related to the modification of O 2p states by the strong interaction between Sm 4f and O 2p states. In particular, the availability of unoccupied O 2p states near the Fermi level is responsible for enhancing the sulfur tolerance of Sm-doped CeO2 compared to the pure CeO2 by increasing the activity of the surface lattice oxygen toward sulfur adsorption, by weakening the interaction between Sm-O, and by increasing the migration tendency of the subsurface oxygen ion toward the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.