Abstract

Summary A large body of literature has reflected an extensive experimental study of natural imbibition driven by local capillary pressures at high interfacial tension (IFT). However, water imbibition induced by emulsification at low IFT is not well understood. Recently, anionic surfactants have been shown to induce imbibition in mixed- and oil-wet carbonates. Sodium carbonate has been used to reduce the surfactant adsorption. However, calcium and other divalent cations can cause precipitation of the alkali unless soft water is used. This is a significant limitation of sodium carbonate. The present research both advances our understanding of the use of chemicals to enhance oil recovery (EOR) from fractured carbonate reservoirs and indicates how the process can be optimized using novel chemicals. This research applies to the improvement of oil recovery from mixed- and oil-wet fractured carbonate reservoirs. We show how to select and evaluate new chemicals as natural imbibition enhancers in carbonate rocks. A novel experimental method has also been developed to quantify the significance of capillary and emulsification driven imbibition because of the presence of the chemical imbibition enhancers. An in situ imbibition profile was visualized using a computed tomography (CT) X-ray scanning technique. The results show that formation of microemulsion strongly promotes water imbibition. The rate was highest for Winsor Type II microemulsion and lowest for Winsor Type I microemulsion. The alkalis exhibited a striking imbibition enhancement driven mainly by alteration of capillary pressure. The performance of the imbibition enhancers was found to be consistent for different core-plug sizes and boundary conditions. A novel alkali has been tested that shows a high tolerance for hardness and, thus, may be a good alternative to sodium carbonate under some conditions. The application of low-cost chemicals to EOR from fractured carbonates is an extremely significant development owing to the vast volumes of oil in such reservoirs and the lack of practical alternative methods of recovering such oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call