Abstract
One of the early sequelae of ischemia is an increase of circulating lactic acid that occurs in response to anaerobic metabolism. The purpose of the present study was to investigate whether lactic acidosis can induce endothelial swelling in vitro under closely controlled extracellular conditions. Cell volume of suspended cultured bovine aortic endothelial cells was measured by use of an advanced Coulter technique employing the "pulse area analysis" signal-processing technique (CASY1). The isosmotic reduction of pH from 7.4 to 6.8 had no effect on cell volume. Lowering of pH to 6.6, 6.4, or 6.0, however, led to significant, pH-dependent increases of cell volume. Swelling was more pronounced in bicarbonate-buffered media than in HEPES buffer. Specific inhibition of Na(+)/H(+) exchange by ethylisopropylamiloride completely prevented swelling in HEPES-buffered media. Pretreatment with ouabain to partially depolarize the cells did not affect the degree of acidosis-induced swelling. In bicarbonate-buffered media, the inhibition of transmembrane HCO(3)(-) transport by DIDS reduced swelling to a level comparable with that seen in the absence of bicarbonate ions. Lactacidosis-induced endothelial swelling, therefore, is a result of intracellular pH regulatory mechanisms, namely, Na(+)/H(+) exchange and bicarbonate-transporting carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.