Abstract
Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.