Abstract

Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled differentiated action potentials and long-duration (>20 ms) monophasic potentials. A three-dimensional morphological model of a pyramidal cell was employed to determine the extracellular field produced by a neuron and its effect on a nearby neuron resulting from both gap junctional and electric field coupling. Computations were performed with a novel formulation of the boundary element method that employs triangular elements to discretize the soma and cylindrical elements to discretize the dendrites. An analytic formula was derived to aid in computations involving cylindrical elements. Simulation results were compared with biological recordings of intracellular potentials and spikelets. Field effects produced waveforms resembling spikelets although of smaller magnitude than those recorded in vitro. Gap junctional electrotonic connections produced waveforms resembling small-amplitude excitatory postsynaptic potentials. Intracellular electrode measurements were found inadequate for ascertaining membrane events because of externally applied electric fields. The transmembrane voltage induced by the electric field was highly spatially dependent in polarity and wave shape, as well as being an order of magnitude larger than activity measured at the electrode. Membrane voltages because of electrotonic current injection across gap junctions were essentially constant over the cell and were accurately depicted by the electrode. The effects of several parameters were investigated: 1) decreasing the ratio of intra to extracellular conductivity reduced the field effects; 2) the tree structure had a major impact on the intracellular potential; 3) placing the gap junction in the dendrites introduced a time delay in the gap junctional mediated electrotonic potential, as well as deceasing the potential recorded by the somatic electrode; and 4) field effects decayed to one-half of their maximum strength at a cell separation of approximately 20 micron. Results indicate that the in vitro measured spikelets are unlikely to be mediated by gap junctions and that a spikelet produced by the electric field of a single source cell has the same waveshape as the measured spikelet but with a much smaller amplitude. It is hypothesized that spikelets are a manifestation of the simultaneous electric field effects from several local cells whose action potential firing is synchronized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.