Abstract

Proteins often regulate their activities via allostery-or action at a distance-in which the binding of a ligand at one binding site influences the affinity for another ligand at a distal site. Although less studied than in proteins, allosteric effects have been observed in experiments with DNA as well. In these experiments two or more proteins bind at distinct DNA sites and interact indirectly with each other, via a mechanism mediated by the linker DNA molecule. We develop a mechanical model of DNA/protein interactions which predicts three distinct mechanisms of allostery. Two of these involve an enthalpy-mediated allostery, while a third mechanism is entropy driven. We analyze experiments of DNA allostery and highlight the distinctive signatures allowing one to identify which of the proposed mechanisms best fits the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.