Abstract

Whether a stressed material fractures by brittle cleavage or ductile rupture is determined by its ability to convert elastic strain energy to plastic deformation through the generation and motion of dislocations. Although it is known that pre-existing dislocations play a crucial role in crack tip plasticity, the involved mechanisms are unclear. Here it is demonstrated by atomistic simulations that individual pre-existing dislocations may lead to the generation of large numbers of dislocations at the crack tip. The newly generated dislocations are usually of different types.The processes involved are fundamentally different for stationary cracks and propagating cracks. Whereas local crack front reorientation plays an important role in propagating cracks, the multiplication mechanism at stationary cracks is connected with cross-slip in the highly inhomogeneous stress field of the crack. Analysis of the forces acting on the dislocations allows to determine which dislocations multiply and the slip systems they activate. These results provide the necessary physical link between pre-existing dislocations and the generation of dislocations at crack tips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.