Abstract

SINE-VNTR-Alus (SVAs) are the youngest retrotransposon family in the human genome. Their ongoing mobilization has generated genetic variation within the human population. At least 24 insertions to date, detailed in this review, have been associated with disease. The predominant mechanisms through which this occurs are alterations to normal splicing patterns, exonic insertions causing loss-of-function mutations, and large genomic deletions. Dissecting the functional impact of these SVAs and the mechanism through which they cause disease provides insight into the consequences of their presence in the genome and how these elements could influence phenotypes. Many of these disease-associated SVAs have been difficult to characterize and would not have been identified through routine analyses. However, the number identified has increased in recent years as DNA and RNA sequencing data became more widely available. Therefore, as the search for complex structural variation in disease continues, it is likely to yield further disease-causing SVA insertions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.