Abstract

Knowledge of defect formation mechanisms in the manufacturing process helps improve product quality. In this study, defect formation due to re-melting of each layer in selective laser melting of Ti-6Al-4V demonstrated the physical behavior in the manufacture of metallic parts. The re-melting strategy was based on scanning with low energy density (ED) and increased ED with various combinations of laser processing parameters. The increased EDs and their parameters, namely laser power, scanning speed, and hatch distance, were selected based on the previous research experience by the authors. The concept of selecting a low ED followed by a high ED was to reduce the spattering of the powder material during the process. The low ED caused partial sintering of the powder, while the high ED caused the melting of the material, resulting in different metallurgical properties of the manufactured parts. Densities, pore properties, porosity in the initial layers, surface morphologies, and microstructures in the defective areas of the samples were studied to determine the effects of re-melting. Advantages and disadvantages were found with respect to the range of applications of the products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.