Abstract

To explore the mechanisms of Dangua Recipe (DGR) in improving glycolipid metabolism based on transcriptomics. Sprague-Dawley rats with normal glucose level were divided into 3 groups according to a random number table, including a conventional diet group (Group A), a DGR group (Group B, high-calorie diet + 20.5 g DGR), and a high-calorie fodder model group (Group C). After 12 weeks of intervention, the liver tissue of rats was taken. Gene sequence and transcriptional analysis were performed to identify the key genes related to glycolipid metabolism reflecting DGR efficacy, and then gene or protein validation of liver tissue were performed. Nicotinamide phosphoribosyl transferase (Nampt) and phosphoenolpyruvate carboxykinase (PEPCK) proteins in liver tissues were detected by enzyme linked immunosorbent assay, fatty acid synthase (FASN) protein was detected by Western blot, and fatty acid binding protein 5 (FABP5)-mRNA was detected by quantitative real-time polymerase chain reaction. Furthermore, the functional verification was performed on the diabetic model rats by Nampt blocker (GEN-617) injected in vivo. Hemoglobin A1c (HbA1c), plasma total cholesterol and triglycerides were detected. Totally, 257 differential-dominant genes of Group A vs. Group C and 392 differential-dominant genes of Group B vs. Group C were found. Moreover, 11 Gene Ontology molecular function terms and 7 Kyoto Encyclopedia of Genes and Genomes enrichment pathways owned by both Group A vs. Group C and Group C vs. Group B were confirmed. The liver tissue target validation showed that Nampt, FASN, PEPCK protein and FABP5-mRNA had the same changes consistent with transcriptome. The in vivo functional tests showed that GEN-617 increased body weight, HbA1c, triglyceride and total cholesterol levels in the diabetic rats (P<;0.05 or P<;0.01); while all the above-mentioned levels (except triglyceride) were decreased significantly by GEN-617 combined with DGR intervention (P<;0.05 or P<;0.01). Nampt activation was one of the mechanisms about DGR regulating glycolipid metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call