Abstract

Curcumin, the active ingredient from the spice turmeric (Curcuma longa Linn), is a potent antioxidant and anti-inflammatory agent. It has been recently demonstrated to possess discrete chemopreventive activities. However, the molecular mechanisms underlying such anticancer properties of curcumin still remain unrealized, although it has been postulated that induction of apoptosis in cancer cells might be a probable explanation. In the current study, curcumin was found to decrease the Ehrlich's ascites carcinoma (EAC) cell number by the induction of apoptosis in the tumor cells as evident from flow-cytometric analysis of cell cycle phase distribution of nuclear DNA and oligonucleosomal fragmentation. Probing further into the molecular signals leading to apoptosis of EAC cells, we observed that curcumin is causing tumor cell death by the up-regulation of the proto-oncoprotein Bax, release of cytochrome c from the mitochondria, and activation of caspase-3. The status of Bcl-2 remains unchanged in EAC, which would signify that curcumin is bypassing the Bcl-2 checkpoint and overriding its protective effect on apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call