Abstract

Combining density functional theory and high-resolution NC-AFM experiments, we have studied the on-surface reaction mechanisms responsible for the covalent dimerization of 4-iodobenzoic acid (IBA) organic molecules on the calcite (10.4) insulating surface. When annealed at 580 K, the molecules assemble in one-dimensional chains of covalently bound dimers. The chains have a unique orientation and result from a complex set of processes, including a nominally rather costly double dehalogenation reaction followed by dimerization. First, focusing on the latter two processes and using the nudged elastic band method, we analyze a number of possible mechanisms involving one and two molecules, and we isolate the key aspects facilitating the reaction on calcite. Second, we find that the insulating surface plays an active role as a catalyst by identifying two relevant processes: one exhibiting an intermediate state of chemisorbed molecules after independent dehalogenations and a second, highly nontrivial exothermic ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call