Abstract

Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Rupture-prone atheromas that give rise to myocardial infarction and stroke are characterized by the presence of a necrotic core and a thin fibrous cap. During homeostasis, cellular debris and apoptotic cells are cleared quickly through a process termed "efferocytosis". However, clearance of apoptotic cells is significantly compromised in many chronic inflammatory diseases, including atherosclerosis. Emerging evidence suggests that impairments in efferocytosis drive necrotic core formation and contribute significantly to plaque vulnerability. Recently, it has been appreciated that successive rounds of efferocytosis, termed "continual efferocytosis", is mechanistically distinct from single efferocytosis and relies heavily on the metabolism and handling of apoptotic cell-derived cargo. In vivo, selective defects in continual efferocytosis drive secondary necrosis, impair inflammation resolution, and worsen atherosclerosis. This Mini Review focuses on our current understanding of the cellular and molecular mechanisms of continual efferocytosis and how dysregulations in this process mediate nonresolving inflammation. We will also discuss possible strategies to enhance efferocytosis when it fails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.