Abstract

Exposure of prawns to dark- or light-coloured substrates is known to trigger a strong colour adaptation response through expansion or contraction of the colouration structures in the prawn hypodermis. Despite the difference in colour triggered by this adaptive response, total levels of the predominant carotenoid pigment, astaxanthin, are not modified, suggesting that another mechanism is regulating this phenomenon. Astaxanthin binds to a specific protein called crustacyanin (CRCN), and it is the interaction between the quantities of each of these compounds that produces the diverse range of colours seen in crustacean shells. In this study, we investigated the protein changes and genetic regulatory processes that occur in prawn hypodermal tissues during adaptation to black or white substrates. The amount of free astaxanthin was higher in animals adapted to dark substrate compared with those adapted to light substrate, and this difference was matched by a strong elevation of CRCN protein. However, there was no difference in the expression of CRCN genes either across the moult cycle or in response to background substrate colour. These results indicate that exposure to a dark-coloured substrate causes an accumulation of CRCN protein, bound with free astaxanthin, in the prawn hypodermis without modification of CRCN gene expression. On light-coloured substrates, levels of CRCN protein in the hypodermis are reduced, but the carotenoid is retained, undispersed in the hypodermal tissue, in an esterified form. Therefore, the abundance of CRCN protein affects the distribution of pigment in prawn hypodermal tissues, and is a crucial regulator of the colour adaptation response in prawns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.