Abstract

Various agonists but also chilling cause blood platelets to increase cytosolic calcium, polymerize actin, and change shape. We report that cold increases barbed end nucleation sites in octyl glucoside-permeabilized platelets by 3-fold, enabling analysis of the intermediates of this response. Although chilling does not change polyphosphoinositide (ppI) levels, a ppI-binding peptide completely inhibits cold-induced nucleation. The C terminus of N-WASp, which inhibits the Arp2/3 complex, blocks nucleation by 40%; GDPbetaS, N17Rac and N17Cdc42 have no effects. Some gelsolin translocates to the detergent-insoluble cytoskeleton after cooling. Chilled platelets from gelsolin-deficient mice have approximately 50% fewer new actin nuclei compared with platelets from wild-type mice. EGTA completely inhibits gelsolin translocation into the cytoskeleton, and the small amount of gelsolin initially there becomes soluble. Chilling releases adducin from the detergent-resistant cytoskeleton. We conclude that platelet actin filament assembly induced by cooling involves ppI-mediated actin filament barbed end uncapping and de novo nucleation independently of surface receptors or downstream signaling intermediates besides calcium. The actin-related changes occur in platelets at temperatures below 37 degrees C, suggesting that the platelet may be more activable at temperatures at the body surface than at core temperature, thereby favoring superficial hemostasis over internal thrombosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.