Abstract
>The combination of CoCl2 with bidentate phosphines is known to catalyze challenging cross-coupling and Heck-type reactions, but the mechanisms of these valuable transformations have not been established. Here, we use electrospray-ionization mass spectrometry to intercept the species formed in these reactions. Our results indicate that a sequence of transmetalation, reductive elimination, and redox disproportionation convert the cobalt(II) precatalyst into low-valent cobalt complexes. These species readily transfer single electrons to alkyl bromides, which thereupon dissociate into alkyl radicals and Br- . In cross-coupling reactions, the alkyl radicals add to the cobalt catalyst to form observable heteroleptic complexes, which release the coupling products through reductive eliminations. In the Heck-type reactions, the low abundance of newly formed ionic species renders the analysis more difficult. Nonetheless, our results also point to the occurrence of single-electron transfer processes and the involvement of radicals in these transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.