Abstract
The antibiotic ciprofloxacin is used extensively to treat a wide range of infections caused by the opportunistic pathogen Pseudomonas aeruginosa. Due to its extensive use, the proportion of ciprofloxacin-resistant P. aeruginosa isolates is rapidly increasing. Ciprofloxacin resistance can arise through the acquisition of mutations in genes encoding the target proteins of ciprofloxacin and regulators of efflux pumps, which leads to overexpression of these pumps. However, understanding of the basis of ciprofloxacin resistance is not yet complete. Recent advances using high-throughput screens and experimental evolution combined with whole-genome sequencing and protein analysis are enhancing our understanding of the genetic and biochemical mechanisms involved in ciprofloxacin resistance. Better insights into the mechanisms of ciprofloxacin resistance may facilitate the development of new or improved therapeutic regimes effective against P. aeruginosa. In this review we discuss the current understanding of the mechanisms of ciprofloxacin resistance and summarize the genetic basis of ciprofloxacin resistance in P. aeruginosa, in the context of current and future use of this antibiotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.