Abstract

Sterol 12α-hydroxylase (CYP8B1) is an obligatory enzyme for the synthesis of cholic acid and regulation of liver bile acid synthesis and intestine cholesterol absorption. The present study evaluates the roles for sterol regulatory element binding proteins (SREBPs) in the regulation of the CYP8B1 gene. Cholesterol feeding of mice and rats decreased the activity of CYP8B1, contrary to the up-regulation of cholesterol 7α-hydroxylase (CYP7A1). Cholesterol feeding also reduced mRNA levels for SREBP-1 but not for SREBP-2 in rat livers. Cholesterol and 25-hydroxycholesterol decreased the CYP8B1/luciferase reporter activity. Co-transfection of SREBP-1a and -1c stimulated CYP8B1 promoter activity, while SREBP-2 did not have any effects. Electrophoretic mobility shift assay and mutagenesis analyses identified several functional sterol regulatory elements (SRE) and E-box motifs in the rat CYP8B1 promoter. Our results indicate that SREBP-1a and -1c enhance transcription of the CYP8B1 gene through binding to SRE. Cholesterol loading reduces SREBP-1 mRNA expression in addition to reducing functional SREBP-1 protein, and results in decreasing CYP8B1 gene transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.