Abstract

One of the fundamental mechanisms of chemical-Mechanical polishing (CMP) is the mechanical interaction between the wafer and polishing pad. This interaction was simulated in experiments. The vertical displacement of the wafer with respect to the polishing pad, the fictional drag of the wafer against the pad, and the pressure of the slurry trapped between the wafer and pad were measured. These experiments were performed over a range of commercially common CMP conditions. In addition, polishing rates were measured for CMP performed under induced hydrodynamic conditions where the wafer was separated from the pad by a film of slurry. It was found that no appreciable polishing occurred under hydrodynamic CMP conditions. Under commercial CMP conditions, it was found that the wafer contacts the polishing pad asperities as evidenced by near-zero wafer displacement and high friction coefficients (˜0.4). It was also found that pad conditioning (intentional roughening) causes a suction force to develop between the wafer and pad. This suction force draws the wafer into further contact with the pad, by as much as 20 μm, and corresponds to peak slurry vacuum pressures of 12 kPa (1.7 psi). Presented as a Society of Tribologists and Lubrication Engineers paper at the World Tribology Congress in London, United Kingdom, September 8–12, 1997

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call