Abstract

Endothelins (ET) within the central nervous system (CNS) alter systemic cardiovascular responses and arginine vasopressin (AVP) secretion. These experiments were designed to ascertain whether the rise in systemic arterial pressure after central administration of ET-1 is mediated by enhancing sympathetic outflow and/or circulating AVP. In Long-Evans (LE/LE) rats, intracerebroventricular injection of 1-10 pmol ET-1 dose dependently increased mean arterial pressure (MAP). Peak response occurred 7-12 min after ET-1 and was inhibited by ETA receptor antagonism. Systemic vasopressin (V1) receptor blockade did not inhibit the pressor response, and rats with central diabetes insipidus (DI/DI) displayed an identical rise in MAP. Ganglionic blockade prevented ET-1-induced hemodynamic effects. Peak plasma AVP levels occurred 60 min after ET-1, as the pressor response began to wane. In sinoaortic-denervated LE/LE rats, ET-1 elicited a 10-fold increase in AVP secretion that coincided with the hemodynamic changes and was blocked by BQ-123. Thus ET-1 via ETA receptors within the CNS induced a concentration-dependent increase in systemic arterial pressure mediated by enhanced sympathetic outflow but not by circulating AVP. Reflex baroreceptor activation attenuated AVP release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.