Abstract

To examine the cartilage growth-associated effects of a disruption in the balance between the swelling pressure of glycosaminoglycans (GAGs) and the restraining function of the collagen network, by diminishing GAG content prior to culture using enzymatic treatment with chondroitinase ABC. Immature bovine articular cartilage explants from the superficial and middle layers were analyzed immediately or after incubation in serum-supplemented medium for 13 days. Other explants were treated with chondroitinase ABC to deplete tissue GAG and also either analyzed immediately or after incubation in serum-supplemented medium for 13 days. Treatment- and incubation-associated variations in tissue volume, contents of proteoglycan and collagen network components, and tensile mechanical properties were assessed. Incubation in serum-supplemented medium resulted in expansive growth with a marked increase in tissue volume that was associated with a diminution of tensile integrity. In contrast, chondroitinase ABC treatment on day 0 led to a marked reduction of GAG content and enhancement of tensile integrity, and subsequent incubation led to maturational growth with minimal changes in tissue volume and maintenance of tensile integrity at the enhanced levels. The data demonstrate that a manipulation of GAG content in articular cartilage explants can distinctly alter the growth phenotype of cartilage. This may have practical utility for tissue engineering and cartilage repair. For example, the expansive growth phenotype may be useful to fill cartilage defects, while the maturational growth phenotype may be useful to induce matrix stabilization after filling defect spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.