Abstract

Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.