Abstract

Most previous studies have focused on high-order harmonic generation beyond the ionization threshold; mechanisms of below-threshold harmonics are less understood. We schematically study the harmonic emission process in this region by numerically solving the time-dependent Schrödinger equation of an atom in laser fields. We show that, besides the quantum path interference mechanism recently identified, the effects induced by the Coulomb potential also have a critical impact on these harmonics. These mechanisms can be distinguished in the structure of harmonic spectra by changing the laser wavelength and peak intensity. We find that the long quantum orbits can influence lower-order harmonics at a higher laser intensity. In addition, we show that the intensity-dependent steps of harmonic yield can disappear for certain harmonic orders, due to the trapping in the Rydberg states before recombination, which can explain recent experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.