Abstract

The cAMP response element (CRE)-binding protein (CREB) stimulates basal transcription of CRE-containing genes and mediates induction of transcription upon phosphorylation by protein kinases. The basal activity of CREB maps to a carboxy-terminal constitutive activation domain (CAD), whereas phosphorylation and inducibility map to a central, kinase-inducible domain (KID). The CAD interacts with and recruits the promoter recognition factor TFIID through an interaction with a specific TATA-binding-protein-associated factor (TAF), dTAFII110/ hTAFII135. Interaction between the TAF and the CAD is mediated by a central cluster of hydrophobic amino acids, mutation of which disrupts TAF binding, polymerase recruitment, and transcription activation. Assessment of the contributions of the CAD and KID to recruitment of the polymerase complex versus enhancement of subsequent reaction steps (isomerization, promoter clearance, and reinitiation) showed that the CAD and P-KID act in a concerted mechanism to stimulate transcription. The CAD, but not the KID, mediated recruitment of a complex containing components of a transcription initiation complex, including pol II, IIB, and IID. However, the CAD was relatively ineffective in stimulating subsequent steps in the reaction mechanism. In contrast, phosphorylation of the KID in CREB effectively stimulated isomerization of the recruited polymerase complex and multiple-round transcription. A model for the activation of transcription by phosphorylated CREB is proposed, in which the polymerase is recruited by interaction of the CAD with TFIID and the recruited polymerase is activated further by phosphorylation of the KID in CREB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call