Abstract
The Bcr-Abl fusion protein kinase causes chronic myeloid leukemia and is targeted by the signal transduction inhibitor STI-571/Gleevec/imatinib (STI-571). Sequencing of the BCR-ABL gene in patients who have relapsed after STI-571 chemotherapy has revealed a limited set of kinase domain mutations that mediate drug resistance. To obtain a more comprehensive survey of the amino acid substitutions that confer STI-571 resistance, we performed an in vitro screen of randomly mutagenized BCR-ABL and recovered all of the major mutations previously identified in patients and numerous others that illuminate novel mechanisms of acquired drug resistance. Structural modeling implies that a novel class of variants acts allosterically to destabilize the autoinhibited conformation of the ABL kinase to which STI-571 preferentially binds. This screening strategy is a paradigm applicable to a growing list of target-directed anti-cancer agents and provides a means of anticipating the drug-resistant amino acid substitutions that are likely to be clinically problematic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.