Abstract

The influence of 1.0 Hz renal nerve stimulation (RNS) on the renal excretion of sodium and bicarbonate was determined in anesthetized dogs before and during inhibition of renal bicarbonate reabsorption. RNS decreased both urinary sodium and bicarbonate excretion without changing arterial pressure, renal blood flow, or glomerular filtration rate. Pharmacological blockade of bicarbonate reabsorption with acetazolamide prevented RNS-induced decreases in bicarbonate excretion and reduced the antinatriuretic response. Physiological blockade of tubular bicarbonate reabsorption with intrarenal sodium bicarbonate infusion (1 M) abolished both the antinatriuretic response to RNS and the decrease in bicarbonate excretion. This physiological blockade of neurogenic antinatriuresis resulted from alkalinization of the urine and/or peritubular blood rather than an increase in filtered sodium load, because during intrarenal infusion of 1 M sodium chloride RNS concomitantly decreased sodium and urinary bicarbonate excretion. Since antinatriuretic responses and the decrease in bicarbonate excretion response to RNS were significantly decreased by blockade of bicarbonate reabsorption (with acetazolamide and intrarenal sodium bicarbonate infusion), antinatriuresis during RNS is partly mediated by a mechanism dependent on intact bicarbonate reabsorption. The data suggest that renal nerve activity may participate in the normal regulation of acid-base balance via changes in bicarbonate excretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call