Abstract

Transient (2 min) acidic (pH 6.6) reperfusion with low [HCO3-] solution suppresses reperfusion-induced ventricular fibrillation (VF) in the isolated rat heart. Using this preparation, we tested whether the effect was mediated by the high [H+] or the low [HCO3-] of perfusate. Left and right coronary beds were independently perfused with HCO3(-)-containing (25.0 mmol/l) solution at pH 7.4. Regional ischemia was then induced by stopping flow to the left coronary bed for 10 min. Hearts were subsequently assigned to four groups (n = 12 hearts/group), and the left coronary bed was reperfused with either HCO3(-)-containing (25.0 or 4.0 mmol/l) or HCO3(-)-free (5.0 mmol/l HEPES) solution, at pH 7.4 throughout (control reperfusion) or at pH 6.6 for the first 2 min and at pH 7.4 from 2 to 5 min (acidic reperfusion). Regardless of the buffer, controls exhibited a high (92 and 100%) incidence of VF; this was reduced to 42% in both of the acidic reperfusion groups (P < 0.05). There were no intergroup differences in heart rate, coronary flow, or size of ischemic zone. Thus high [H+], rather than low [HCO3-], appears to mediate the antifibrillatory effect of transient acidic reperfusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call