Abstract

Diminazene is an anti-infection agent for animals and is a member of the diarylamidine group. This study reports the first detection of its inhibitory effect on AMPA-type ionotropic glutamate receptors. Experiments were carried out on isolated Wistar rat neurons: striatal giant cholinergic interneurons were used to study calcium-permeable AMPA receptors and hippocampal field CA1 pyramidal neurons were used to study calcium-impermeable AMPA receptors. Cells were isolated by vibrodissociation and currents were recorded by voltage clamping in the whole cell configuration. Diminazene produced concentration-dependent inhibition of currents evoked by application of kainate in both neuron types. IC50 values for calcium-permeable and calcium-impermeable AMPA receptors were 60 ± 11 and 160 ± 30 μM, respectively. Of note is that the inhibitory action of diminazene increased with increases in agonist concentration. The plot of the voltage dependence of inhibition at a fixed diminazene concentration for calcium-permeable AMPA receptors was biphasic: minimal inhibition was seen at positive potentials and maximum at –40 to –60 mV, while further hyperpolarization produced a gradual decrease in blockade efficacy. All these properties provide evidence that diminazene blocks AMPA receptor channels, perhaps with penetration through channels into cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call