Abstract

AbstractIn this paper, experimental studies were conducted using a true triaxial apparatus with a bender element system to examine the mechanisms of aging-induced, small-strain shear modulus changes in sand samples under isotropic and anisotropic loading. Numerical simulations based on the discrete element method (DEM) were also carried out in parallel. In the isotropic loading cases, the three measured shear moduli, Gxy, Gyz, and Gzx, and associated aging rates, in terms of the modulus changes, are similar in every loading stage. DEM simulations reproduced the experimental findings and suggested a general trend. A sample with a lower shear modulus before aging, because of a greater percentage of weak forces, allows more forces to be redistributed from the strong force network to the weak force network through the process of contact force homogenization during aging and therefore can have a higher aging rate. In the anisotropic loading cases where σz>σx=σy, the measured modulus increase (i.e., the aging r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.