Abstract

Erythrocytes lack nuclei and mitochondria, critical elements in the machinery of nucleated cell apoptosis. However, most recently, it became obvious that erythrocytes may undergo programmed aging, as well as suicidal death. The term eryptosis has been coined to describe the suicidal erythrocyte death. Eryptosis is triggered mainly by increased cytosolic Ca(2+) activity, in turn, Ca(2+) activates Ca(2+)-sensitive K(+) channels, scramblase, calpain and other proteases, respectively. A series of molecular events of erythrocyte programmed death induced. The cascade reaction of related molecules and finally lead to cell clearance. There is evidence suggesting that erythrocytes aging and death process are regulated tightly and there are many molecular participants and signaling pathways involved in aging and death process of erythrocytes. Erythrocytes have already been used as a model for aging study, and the knowledge about mechanisms involved in eryptosis may provide an important clue to understand the mechanisms involved in suicidal death of nucleated cells. In this review the factors influencing programmed death of erythrocytes, the role of Ca(2+) and ceramide in programmed death of erythrocytes, the role of blebbing in process of erythrocyte aging, the antigens of erythrocyte aging and so on are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.