Abstract

Cell suspensions of rainbow trout Oncorhynchus mykiss pseudobranch, prepared by Ca(2+) depletion and mechanical maceration, contained a distinct population of cells that always kept their relatively cuboidal shape and did not round up in suspension or proliferate after adhering to the surface of cell culture dishes. Phasecontrast microscopy revealed an extensive system of basal membrane invaginations, and Na(+)-K(+)-ATPase- and anionexchanger-like immunoreactivity could be localized in cell membranes. The cells were characterized by a high mitochondrial density. Using specific antibodies, V-ATPase subunit B was localized in the plasma membrane. Using a cytosensor microphysiometer, the rate of acid secretion of these cells was measured and compared with the activity of a gill cell preparation. Incubation of pseudobranch cells with bafilomycin A1 (10(-6) mol l(-1)), a specific inhibitor of V-ATPase, reduced the rate of acid secretion by about 10% under control conditions, while no effect of bafilomycin on the rate of acid secretion of gill cells was observed. Application of amiloride (5 x 10(-5) mol l(-1)) reduced the rate of acid secretion in cells of both organs, pseudobranch and gills. Incubation of pseudobranch cells with DIDS (10(-3) mol l(-1)) resulted in a minor increase in the rate of proton secretion, but in cells prepared from the gills of rainbow trout acid secretion was reduced by about 30-40%. It is concluded that pseudobranch cells are equipped with various pathways to secrete protons, and that the anion exchange activity especially of pseudobranch cells appears to be different from that in gills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.