Abstract

In a majority of patients with left bundle-branch block (LBBB), there is abnormal leftward motion of the interventricular septum during the preejection phase. This motion was considered to be passive, caused by early rise in right ventricular (RV) pressure, and has therefore been excluded from most indices of left ventricular (LV) dyssynchrony. If considered active, however, the leftward motion reflects onset of septal activation and should be included. We therefore investigated if the motion was a passive response to pressure changes or caused by active contraction. LBBB was induced in 8 anesthetized dogs with micromanometers. Cardiac dimensions were measured by sonomicrometry and echocardiography. Induction of LBBB resulted in preejection leftward motion of the septum, simultaneously with shortening of septal segments (P<0.01). In each experiment, preejection septal shortening occurred against rising LV pressure, consistent with active contraction. Furthermore, the LV pressure-segment length relationships were shifted upward (P<0.01) relative to the passive elastic curve, indicating stiffening of septal myocardium, confirming an active mechanism. Initially, RV pressure increased faster than LV pressure, suggesting that the leftward septal motion may have a passive pressure component. However, the passive component appeared to play a minor role. The magnitude of preejection septal shortening was modified by load alterations. Leftward preejection motion of the septum during LBBB is mainly a result of active septal contraction, whereas alterations in diastolic ventricular pressures modulate the amplitude of this motion. The findings imply that the preejection phase should be included when assessing LV dyssynchrony.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call