Abstract

The avian embryo provides a novel model for studying the ductus arteriosus (DA) during the transition from in ovo to ex ovo life. Here we examined the mechanisms regulating the vasoreactivity of the two morphologically distinct portions of the chicken DA (proximal and distal) in response to O(2). Oxygen-induced contraction is redox sensitive and reversed by the reducing agent dithiothreitol and the H(2)O(2) scavenger N-mercaptopropionylglycine. As in the mammalian DA, inhibiting mitochondrion-derived reactive oxygen species production with rotenone and antimycin A relaxed the O(2)-constricted DA. The contractile response to O(2) matures during hatching and is mimicked by the K(v) channel inhibitor 4-aminopyridine (4-AP) on day 19 and externally pipped (EP) embryos. Together, O(2) and 4-AP significantly increase DA tone above that observed with either alone. The O(2)-induced contraction is mediated by influx of extracellular Ca(2+) through l-type Ca(2+) and store-operated channels. Inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores play a minor role in the O(2)-induced contraction. The O(2)-induced contraction is mediated by the Rho kinase pathway, as fasudil and Y-27632 significantly relax the O(2) contracted DA. Prostaglandins E(2), F(2alpha), and D(2) produce significant contraction of the proximal DA. The O(2)-induced relaxation of the distal portion of the DA is mediated by an endothelial-derived nitric oxide/cGMP pathway. Both 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and endothelial cell removal inhibit O(2)-induced relaxation in the distal segment. Mechanisms regulating O(2)-induced contraction in chicken proximal DA are similar to those found in mammalian DA, making the chicken a useful model for studying development of this O(2)-sensitive vessel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call