Abstract

Electrical stimulation of colonic muscles elicits a response during the stimulation period, and a transient excitation after the stimulus. Post-stimulus or "rebound" excitation has been linked to pathways involving inhibitory neurotransmitters, prostaglandins and substance P but the mechanism is incompletely understood. Because rabbit colitis is characterized by a loss of inhibitory neurotransmission we hypothesized it might affect the rebound response. Therefore we characterized rebound responses in non-inflamed and inflamed tissue by comparing the effect of antagonists/blockers of putative (nitric oxide [NO], ATP, substance P, prostaglandins) and new (serotonin) neurotransmitters. Strips from rabbits with colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) were subjected to electrical field stimulation. Because rebound responses are more prominent under nonadrenergic noncholinergic (NANC) conditions, the effect of specific antagonists (N(omega)-nitro-L-arginine methyl ester (L-NAME), indomethacin, SR140333, methiothepin) on the rebound response was compared under normal and NANC conditions. NANC-conditions increased rebound responses in non-inflamed strips, but this effect was reduced or abolished in inflamed strips. Rebound responses were reduced by pretreatment with the NO-synthase inhibitor, L-NAME, under NANC conditions in non-inflamed strips but not affected in inflamed tissue. In contrast, the P(2) purine receptor antagonist, suramin, did not affect rebound responses in inflamed and non-inflamed strips. The effect of the cyclo-oxygenase inhibitor (COX), indomethacin, on rebound responses was reversed from excitatory to inhibitory by inflammation. Under NANC conditions rebound contractions were also reduced by the neurokinin-1 (NK(1)) antagonist, SR140333, both in normal and inflamed strips. The most pronounced reduction in rebound responses in inflamed and non-inflamed strips under normal conditions was observed with the 5-hydroxytryptamin (1,2) (5-HT(1,2)) antagonist, methiothepin. Rebound responses are mainly non-cholinergic and involve NO, substance P, serotonin and inhibitory prostaglandins. In inflamed tissue the nitrergic pathway is absent, excitatory prostaglandins prevail and the cholinergic and tachykinergic components are relatively more important. However there remains an important serotonergic contribution. Our data suggest that inflammation damages different neural pathways to a different extent and is most selective for nitrergic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.