Abstract

Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A(2A) and A(3) receptor expression was observed in the arterial wall and A(2A)-immunoreactivity was identified in the adventitia-media junction and endothelium. A(1) and A(2B) receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A(2A) antagonist, reduced NECA relaxations that were not modified by A(1), A(2B), and A(3) receptor antagonists. Neuronal voltage-gated Ca(2+) channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IK(Ca))- and small (SK(Ca))-conductance Ca(2+)-activated K(+) channels. Inhibition of cyclooxygenase (COX), large-conductance Ca(2+)-activated-, ATP-dependent-, and voltage-gated-K(+) channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A(2A) purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IK(Ca) and SK(Ca) channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.