Abstract

Sodium fluoride (NaF) has previously been reported to induce a strong IL-8 response in human epithelial lung cells (A549) via mechanisms that seem to involve the activation of G proteins. In the present study the signal pathways downstream of the G proteins have been examined. NaF induced a weak, but sustained increase in PKC activity. In contrast, the PKC activator TPA induced a relatively strong, but transient effect and augmented the NaF-induced PKC activity. TPA induced a marked IL-8 response compared to NaF. PDB, another PKC activator, was less effective, but augmented the IL-8 response to NaF. Pretreatment with TPA for 20 h, or the PKC inhibitor GF109203X for 1 h, abolished the basal and NaF-induced PKC activities and partially prevented the NaF-induced IL-8 response. Inhibition of the MAP kinase p38 by SB202190 partially reduced the IL-8 response to NaF, whereas a reduction in ERK activity by PD98059 led to an increased response. The NaF-induced IL-8 response was weakly augmented by the PKA stimulator forskolin and the G i inhibitor pertussis toxin. The PKA inhibitor H89 seemed to reduce the NaF-induced IL-8 response, but the measured effect was not statistically significant. BAPTA-AM, KN93 and W7, that inhibit Ca 2+-linked effects, did not affect the IL-8 response. Furthermore, the tyrosine kinase inhibitor genestein, the PI-3 kinase inhibitor wortmannin and phosphatase inhibition were without effects. In conclusion, the data suggest that NaF-induced increase of IL-8 in A549 cells involved PKC- and p38-linked pathways, whereas an ERK-dependent pathway counteracted the response. Tyrosine kinases, Ca 2+-linked pathways, PI-3 kinase, PKA and phosphatase inhibition seem to play no or minor roles in the fluoride-induced IL-8 response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call