Abstract

Antibiotic contaminants could promote the formation of harmful cyanobacterial blooms through hormetic stimulation, but the mechanisms underlying these stimulatory effects remain unclear. This study investigated the biochemical, transcriptomic, and proteomic responses of a dominant bloom-forming cyanobacterium, Microcystis aeruginosa, to a five-component mixture of frequently detected antibiotics at current contamination levels. The growth rate of M. aeruginosa presented a U-shaped dose-response to 50–500 ng L-1 of mixed antibiotics. Alterations in the transcriptome of M. aeruginosa suggested the excitation of both photosynthesis and carbon metabolism, increasing energy generation in response to oxidative stress induced by low-dose antibiotics, and thus contributing to the significant (p < 0.05) increase in growth rate, Fv/Fm, and cell density. Comparison between transcriptomic and proteomic responses further confirmed the action mode of the mixed antibiotics. Proteins and their corresponding genes related to ROS scavenging, photosynthesis, carbon fixation, electron transport, oxidative phosphorylation, and biosynthesis, showed consistent expression tendencies in response to 200 ng L-1 of mixed antibiotics, which were credible action targets of mixed antibiotics in M. aeruginosa. Mixed antibiotics stimulated microcystin synthesis by upregulating a microcystin synthetase and its encoding gene (mcyC), which could increase the hazard of M. aeruginosa in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call