Abstract

Reactions of ozone with ethene and propene leading to primary ozonide (concerted and stepwise ozonolysis) or epoxide and singlet molecular oxygen (partial ozonolysis) are studied theoretically. The mechanism of concerted ozonolysis proceeds via a single transition structure which is a partial diradical. The transition structures and intermediates in the stepwise ozonolysis and partial ozonolysis mechanisms are singlet diradicals. Spin-restricted and unrestricted density functional methods are employed to calculate the structures of the closed-shell and diradical species. Although the partial diradicals exhibit moderate to pronounced instability in their RDFT and RHF solutions, RDFT is required to locate the transition structure for concerted ozonolysis. Spin projected fourth-order Møller–Plesset theory (PMP4) was used to correct the DFT energies. The calculated pre-exponential factors and activation energies for the concerted ozonolysis of ethene and propene are in good agreement with experimental values. However, the PMP4//DFT procedure incorrectly predicts the stepwise mechanism as the favored channel. UCCSD(T) predicts the concerted mechanism as the favored channel but significantly overestimates the activation energies. RCCSD(T) is found to be more accurate than UCCSD(T) for the calculation of the concerted mechanism but is not applicable to the diradical intermediates. The major difficulty in accurate prediction of the rate constant data for these reactions is the wide range of spin contamination for the reference UHF wave functions and UDFT solutions across the potential energy surface. The possibility of the partial ozonolysis mechanism being the source of epoxide observed in some experiments is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.