Abstract

Removal of Mg2+ caused oscillations of the cytosolic Ca2+ concentration ([Ca2+]i) and the membrane potential in cultured cerebellar granule neurons. Oscillations of [Ca2+]i were synchronous in all the cells, and were restricted to the neurons (immunocytochemically identified) that responded to exogenous N-methyl-D-aspartate (NMDA). Oscillations were blocked by Ca2+ removal, nickel, NMDA receptor antagonists, omega-agatoxin IVA, tetrodotoxin, sodium removal and gamma-aminobutyric acid, but not by dihydropyridines, omega-conotoxin M VIIA or by emptying the intracellular Ca2+ stores with thapsigargin or ionomycin. The upstroke of the [Ca2+]i oscillations coincided in time with an increase in manganese permeability of the plasma membrane. Propagation of the [Ca2+]i wave followed more than one pathway and the spatiotemporal pattern changed with time. Membrane potential oscillations consisted of transient slow depolarizations of approximately 20 mV with faster phasic activity superimposed. We propose that the synchronous [Ca2+]i oscillations are the expression of irradiation of random excitation through a neuronal network requiring generation of action potentials and functional glutamatergic synapses. Oscillations of -Ca2+-i are due to cyclic Ca2+ entry through NMDA receptor channels activated by synaptic release of glutamate, which requires Ca2+ entry through P-type Ca2+ channels activated by action potentials at the presynaptic terminal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call