Abstract

Potential mechanisms for stabilising and destabilising the spatially uniform steady states of systems of reaction-diffusion equations are examined. In the first instance the effect of introducing small periodic perturbations of the diffusion coefficients in a general system of reaction-diffusion equations is studied. Analytical results are proved for the case where the uniform steady state is marginally stable and demonstrate that the effect on the original system of such perturbations is one of stabilisation. Numerical simulations carried out on an ecological model of Levin and Segel (1976) confirm the analysis as well as extending it to the case where the perturbations are no longer small. Spatio-temporal delay is then introduced into the model. Analytical and numerical results are presented which show that the effect of the delay is to destabilise the original system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.