Abstract
All space instruments contain mechanisms or moving mechanical assemblies that must move (sliding, rolling, rotating, or spinning) and their successful operation is usually mission-critical. Generally, mechanisms are not redundant and therefore represent potential single point failure modes. Several space missions have suffered anomalies or failures due to problems in applying space mechanisms technology. Mechanisms require a specific qualification through a dedicated test campaign. This paper covers the design, development, testing, production, and in-flight experience of the PICARD/SODISM mechanisms. PICARD is a space mission dedicated to the study of the Sun. The PICARD Satellite was successfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, near Yasny (Russia). SODISM (SOlar Diameter Imager and Surface Mapper) is a 11 cm Ritchey-Chretien imaging telescope, taking solar images at five wavelengths. SODISM uses several mechanisms (a system to unlock the door at the entrance of the instrument, a system to open/closed the door using a stepper motor, two filters wheels using a stepper motor, and a mechanical shutter). For the fine pointing, SODISM uses three piezoelectric devices acting on the primary mirror of the telescope. The success of the mission depends on the robustness of the mechanisms used and their life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.