Abstract

Mechanisms for one-dimensional photon sorting are theoretically studied in the framework of a coupled-mode method. The considered system is a nanopatterned structure composed of two different pixels drilled on the surface of a thin gold layer. Each pixel consists of a slit–groove array designed to squeeze a large fraction of the incident light into the central slit. The Double-Pixel is optimized to resolve two different frequencies in the near infrared. This system shows high transmission efficiencies and a small crosstalk. It is found that the response of the system strongly depends on the effective area shared by overlapping pixels. According to such degree of overlap, photon sorting can be achieved within three different regimes, which are discussed in detail. Optimal photon-sorting efficiencies are obtained for a moderate number of grooves that overlap with grooves of the neighbor pixel. These results could be applied to both optical and infrared detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call