Abstract
We design and analyze deterministic truthful approximation mechanisms for multi-unit Combinatorial Auctions involving only a constant number of distinct goods, each in arbitrary limited supply. Prospective buyers (bidders) have preferences over multisets of items, i.e., for more than one unit per distinct good. Our objective is to determine allocations of multisets that maximize the Social Welfare. Our main results are for multi-minded and submodular bidders. In the first setting each bidder has a positive value for being allocated one multiset from a prespecified demand set of alternatives. In the second setting each bidder is associated to a submodular valuation function that defines his value for the multiset he is allocated. For multi-minded bidders, we design a truthful FPTAS that fully optimizes the Social Welfare, while violating the supply constraints on goods within factor (1+e), for any fixed e>0 (i.e., the approximation applies to the constraints and not to the Social Welfare). This result is best possible, in that full optimization is impossible without violating the supply constraints. For submodular bidders, we obtain a PTAS that approximates the optimum Social Welfare within factor (1+e), for any fixed e>0, without violating the supply constraints. This result is best possible as well. Our allocation algorithms are Maximal-in-Range and yield truthful mechanisms, when paired with Vickrey-Clarke-Groves payments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.