Abstract

The aim of the present study was to investigate the mechanisms for membrane transport of metformin in human intestinal epithelial Caco-2 cells. The mRNA of not only organic cation transporter (OCT) 3, but also OCT1 and OCT2, was expressed in Caco-2 cells. The uptake of 100 µm metformin at the apical membrane of Caco-2 cells grown on porous filter membrane was significantly greater than that at the basolateral membrane. The apical uptake of 100 µm metformin in Caco-2 cells grown on plastic dishes was inhibited significantly by 1 mm unlabeled metformin, quinidine and pyrilamine, indicating that a specific transport system is involved in the apical uptake of metformin in Caco-2 cells. The apical uptake of 100 µm metformin in Caco-2 cells was decreased by acidification of the medium, but not increased by alkalization. In addition, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a protonophore) had no effect on the apical uptake of metformin in Caco-2 cells at apical medium pH 8.4. These findings suggested that the apical uptake of metformin in Caco-2 cells is mediated at least partly by OCTs, but that the postulated H(+) /tertiary amine antiport system is not responsible for the apical uptake of metformin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call