Abstract
Plant cell walls prevent molecules with high molecular weights from reaching the cell membrane, challenging genome editing in plants. To overcome this challenge, the microplasma method, established as a gene and molecule transfection technology in animal cells, was investigated in tobacco plants. We found that plasma treatment of tobacco leaves and calluses introduced fluorescent molecules into epidermal and callus cells. Scanning electron microscopy revealed that plasma treatment decomposed the cuticula layer on the surface of tobacco leaves and that plasma treatment decomposed the extracellular matrix and caused cracks on the cell wall surface of tobacco callus. These results suggest that when external molecules are introduced into plant cells by plasma treatment, the external molecules’ transport pathway reaches the cell membrane by degradation of the cuticula layer and extracellular matrix. Additionally, the introduction of molecules by plasma treatment was inhibited by an endocytosis inhibitor, indicating that plasma stimulation induces endocytosis. In summary, plasma treatment decomposes the cuticula layer and cellular interstitium, allowing molecules to reach the cell membrane, after which they are introduced into the cell via endocytosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.