Abstract

Lithium difluoro(oxalato)borate (LiDFOB) with one oxalate moiety bonded to a central boron core was employed as a salt-type additive to enhance the interfacial stabilities of high-voltage Li-rich cathodes and graphite anodes. Our investigation revealed that the LiDFOB additive modified the surface film on the electrodes and effectively restrained degradation of the cycling performance of the electrodes. Investigation of the surface chemistries of the electrodes confirmed that LiDFOB produces a LiF-less surface film on the Li-rich cathode and a LiF-rich surface film on the graphite anode. Moreover, the use of 1% LiDFOB drastically improved the rate capabilities of Li-rich cathodes and graphite anodes. Within 100 cycles at a rate of C/2 at 25 °C, only 45.8% of the initial discharge capacity of a high-voltage Li-rich/graphite full cell was delivered in the baseline electrolyte, while the LiDFOB-containing electrolyte retained 82.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.