Abstract

This work reports four different modes of failure during startup uniaxial extension of entangled polymer melts: Capillary, tensile decohesion, shear-yielding-induced necking, and rupture. Emphasis is placed on the identification of the critical condition separating tensile failure from necking and the molecular mechanisms for each type of failures. When Weissenberg number Wi is not vanishingly small, a startup extension terminates in a rupture-like failure where nonuniform extension takes place in a sharply localized manner. This decohesion event reflects the tensile yielding of the entanglement network that occurs due to insufficient intermolecular gripping force to balance the growing intrachain elastic retraction force. At higher rates, the failure mode switches from the tensile decohesion to necking as the entangled melts experience a Cauchy stress level in excess of twice the elastic plateau modulus (2G N0). Since the minimum stress to produce shear yielding is on the order of GN0, in these high-rate...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call