Abstract
In this paper, a detailed mechanism is discussed for two processes: deNOx and deN2O. An FAU catalyst was used for the reaction with Cu-Fe bimetallic adsorbates represented by a dimer with bridged oxygen. Partial hydration of the metal centres in the dimer was considered. Ab initio calculations based on the density functional theory were used. The electron parameters of the structures obtained were also analysed. Visualisation of the orbitals of selected structures and their interpretations are presented. The presented research allowed a closer look at the mechanisms of processes that are very common in the automotive and chemical industries. Based on theoretical modelling, it was possible to propose the most efficient catalyst that could find potential application in industry-this is the FAU catalyst with a Cu-O-Fe bimetallic dimer with a hydrated copper centre. The essential result of our research is the improvement in the energetics of the reaction mechanism by the presence of an OH group, which will influence the way NO and NH3 molecules react with each other in the deNOx process depending on the industrial conditions of the process. Our theoretical results suggest also how to proceed with the dosage of NO and N2O during the industrial process to increase the desired reaction effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.