Abstract

Ejection of ballistic blocks was a characteristic feature of the 2016–2017 Bogoslof eruption. High-resolution satellite images acquired throughout the duration of the 9-month long eruptive period permitted the recognition and mapping of ballistic blocks on the surface of Bogoslof Island. Many of the satellite images recorded the accumulation of ballistic material over several individual eruptive events, but a few images recorded the effects of a single event. The nonuniform spatial distribution of blocks suggests that some of the eruption columns were inclined. Ballistic trajectories were estimated using the Eject! model and indicate that accumulation of blocks on Bogoslof Island required launch angles of 45–80° and initial velocities of 50–100 ms−1 to reproduce observed travel distances. The amount of ballistic fallout observed in satellite data indicates that there must have been a shallow submarine source of rock within the conduit/upper edifice system. Dense, accidental cryptodome trachyandesite, and juvenile basalt to trachybasalt scoria make up the bulk of the surface ejecta. Abundant accidental fragments and inclined eruption columns point to periodic vent-wall collapse and jetting around edges of temporarily blocked vents as the likely cause of ballistic ejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call