Abstract

Mechanisms for activation and for removal of cytosolic Ca2+ after stimulation with bradykinin were investigated in two neural cell lines by measuring cytosolic Ca2+ activity and 45Ca2+ fluxes. In the neuronal (neuroblastoma x glioma hybrid) and in the glial (rat glioma) cell lines, the transient, bradykinin-induced rise in cytosolic Ca2+ activity (determined by fura-2 or indo-1 fluorescence) was blocked by a bradykinin B2 receptor antagonist. Ca2+ ionophores (ionomycin and 4-Br-A23187) caused a comparable transient rise in cytosolic Ca2+ activity. After addition of ionophores, the Ca2+ response to bradykinin was reduced or completely blocked in both cell lines. At the concentrations used, the ionophores primarily depleted intracellular Ca2+ stores and prevented refilling of the stores. Thus, the bradykinin-induced rise of cytosolic Ca2+ activity seems to be mostly due to Ca2+ release from internal stores. In the neuronal but not in the glial cell line, a brief stimulation by bradykinin of 45Ca2+ uptake was followed by a long-lasting inhibition below control values. Thus, in the neuronal cells bradykinin presumably blocks Ca2+ channels by a readily reversible, pertussis toxin-insensitive mechanism. Excess cytosolic Ca2+ of the bradykinin-stimulated cells is mostly not resequestered into the internal Ca2+ pool accessible to bradykinin, but is mainly extruded through the plasma membrane, as indicated by (i) stimulation of 45Ca2+ release by bradykinin, (ii) quick reduction by bradykinin of cellular 45Ca2+ content of cells preequilibrated with 45Ca2+, and (iii) diminution of the ionophore-inducible Ca2+ response after the addition of bradykinin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call